MOLECULAR REPRODUCTION AND DEVELOPMENT 73:1422–1429 (2006) Gamete Interaction: Is it Species-Specific?
نویسنده
چکیده
Reproductive isolation is pivotal to maintain species separation and it can be achieved through a plethora of mechanisms. In addition, the development of barriers to gamete interaction may drive speciation. Such barriers to interspecific gamete interaction can be prezygotic or postzygotic. Considering the great diversity in animal species, it is easy to assume that regulation of the early steps of fertilization is critical to maintain species identity. One prezygotic mechanism that is often mentioned in the literature is that gamete interaction is limited to gametes of the same species. But do gametes of all animals interact in a species-specific way? Are gamete interactions completely species-specific or perhaps just speciesrestricted? In species in which species-restrictions have been described, is the interspecies barrier at one major step in the fertilization process or is it a combination of partially restricted steps that together lead to a block in interspecific fertilization? Are the mechanisms used to avoid interspecific crosses different between free-spawning organisms and those with internal fertilization? This review will address these questions, focusing on prezygotic barriers, and will describe what is known about the molecular biology that may account for species-limited gamete recognition and fertilization. Mol. Reprod. Dev. 73: 1422–1429, 2006. 2006 Wiley-Liss, Inc.
منابع مشابه
Transmembrane Signal Transduction in Oocyte Maturation and Fertilization: Focusing on Xenopus laevis as a Model Animal
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic...
متن کاملMolecular Markers for Fertility in Farm Animals
A genetic marker is a gene or DNA sequence with known localization on a chromosome. It can be de-scribed as a variation that can be measured or detected by a suitable method, and can be used subsequently to detect the presence of a specific genotype. Such variations occurring at chromosomal or DNA level can serve as genetic markers. The progress in development of molecular markers suggests thei...
متن کاملProtein kinase C activity in mouse eggs regulates gamete membrane interaction.
Gamete membrane interaction is critical to initiate the development of a new organism. The signaling pathways governing this event, however, are poorly understood. In this report, we provide the first evidence that protein kinase C activity in mouse eggs plays a crucial role in the regulation of this process. Stimulating PKC activity in mouse eggs by phorbol 12-myristate 13-acetate (PMA) drasti...
متن کاملMammalian diversity: gametes, embryos and reproduction.
The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue...
متن کاملOxidative stress and its implications in female infertility - a clinician's perspective.
Reactive oxygen species (ROS) have a role in the modulation of gamete quality and gamete interaction. Generation of ROS is inherent in spermatozoa and contaminating leukocytes. ROS influence spermatozoa, oocytes, embryos and their environment. Oxidative stress (OS) mediates peroxidative damage to the sperm membrane and induces nuclear DNA damage. ROS can modulate the fertilizing capabilities of...
متن کامل